
Improving Student Understanding, Application and Synthesis of Computer Programming 

Concepts with Minecraft 

 

 

Brett Wilkinson, Neville Williams, Patrick Armstrong 
 

Flinders University of South Australia, Australia 
 

0477 
 

The European Conference on Technology in the Classroom 2013 
 

Official Conference Proceedings 2013 
 
 

Abstract 
 
 

Ensuring student acquisition, comprehension and synthesis of complex yet abstract concepts 
within computer programming teaching is a difficult process, especially with younger 
students.  The syntax and semantic fundamentals within programming languages for many 
students emulate the complexities of learning a foreign written or spoken language.  An 
additional difficulty with learning a programming language is the development environment; 
learning to use an integrated development environment (IDE) can sometimes be as 
complicated as grasping the basics of a language. 
 
This paper discusses a learning structure where the students are introduced to programming 
fundamentals within a familiar and enjoyable development environment – the commercial 
Minecraft game.  Students typically have an awareness of gameplay, controls or at least the 
goals of the game, thereby removing some of the additional learning requirements of the 
development environment.  The use of the game provides motivation for the student to not 
only learn but also apply and synthesise their knowledge, thereby achieving the higher orders 
of Bloom’s Taxonomy.  Providing a correlation between learning environment and personal 
game experience, students developed skills that they identified as enhancing their own game 
experience and showed some desire to replicate and expand on the content delivered. 
 
Foundational skills are developed focussing on variables, assignment, selection and looping 
within a widely used scripting language.  This program has been used to promote 
programming and computer science to students across a range of ages (8 – 16 year olds), skill 
levels (typically developing and gifted) and from various educational sectors (state, religious, 
and Montessori). 
 
Keywords: Computer programming education, development environments, Blooms 
taxonomy, eLearning, games, emerging technologies. 

 
 
 

iafor 
The International Academic Forum 

www.iafor.org 



Introduction 

Teaching students the fundamentals of programming can be a difficult task.  Compounding 
this can be a number of factors ranging from age, culture, socio-economic background, 
capacity, development environment, and motivation.  The ability to keep a student interested 
in what can sometimes be described as stale syntax and semantics can be challenging.  By 
presenting the fundamentals of programming in an accessible, entertaining forum that 
students have a vested interest in, can potentially aid in not just the understanding of the 
language but also in its application and evolution into creative expression and individual 
investigation. 
 
This paper presents a summary of one of a range of workshops that are conducted as outreach 
activities promoting computing and programming.  The tasks that the students are guided 
through are identified and the results of the process, in the form of participant feedback, are 
presented.  By identifying the creativity and application of ideas presented, the paper will 
demonstrate the benefit of an easy to use development environment as well as a motivation 
for using the application. 
 
The paper will survey relevant literature that has guided the development and philosophy 
behind the workshop.  Discussion will continue by identifying the features of the world and 
the workshop tasks.  The presentation of participant feedback and student progression follows 
and provides justification for the types of cognitive development, retention and adaptation as 
identified in traditional pedagogical systems. 
 

Background 

Computer games have grown to become a fundamental part of many people’s social 
environment. Educators already make use of “world to the desktop” environments that 
include web browsers, document editors, information and collaboration. However there exists 
another interaction model within video games (Oblinger, 2006). Rather than static views, 
games provide users with a different experience, one that is immersive for the user and where 
the user interacts with abstracted agents and artifacts. 
 
Work has also shown that when offered the choice between a useful but staid technology 
students will gravitate towards more hedonistic “enjoyable” experiences over of the more 
“useful” alternative  (Van der Heijden, 2004).  A key factor is the perception of ease of use 
for the student, a task that is perceived as enjoyable benefits from an increase in willingness 
of the student to use the system. This suggests that immersing students in a “fun” activity, in 
this case playing Minecraft, can lead to a quicker and more organic acceptance of the learning 
environment. Additionally the increase in time spent playing video games directly affects the 
time students dedicate to other tasks, especially in relation to a student’s willingness to attend 
classes / perform homework. Video games not only displace older activities like watching 
television but also show the impact playing can have in relation to time spent on education 
tasks (Ward, 2012). A way of using this “game time” without sacrificing “education time” 
presents an opportunity to explore. 
 
One video game possibility, Minecraft, has already seen investigation as a tool to aid 
education. Work has been done to explore the use of Minecraft as a catalyst for generating 
interest in STEM topics  (Van der Heijden, 2004), as a way of introducing young children to 
programming using a block based visual mod for the game (Zorn et al.), and a school in 
Sweden has made use of the game compulsory as a tool to aid thinking and collaborative 
skills of young high school students (Gee, 2012). 



However the increase in modifications that expand the Minecraft game world (“mods”) have 
increased the depth of possibilities for the game and one that stands out as a possible tool for 
engaging and teaching detailed programming is ComputerCraft (dan200, 2013). 
ComputerCraft uses the LUA scripting language, a dynamic language designed to be small, 
portable and fast to control “turtle” objects that can be instructed to move, build and interact 
deeply with the world (Ierusalimschy et al., 2007). Code can be written externally and 
imported in or internally using the games own simple editor allowing the use of IDE’s or 
editors. The ComputerCraft community has already used the mod to not only perform 
standard game play tasks but also to develop custom libraries, create ComputerCraft 
operating systems with functional GUI elements and complex GPS structures using turtles. 
However one of the issues with independently developed software is an adherence to 
educational pedagogy. To frame Minecraft and ComputerCraft as an educational tool we 
looked to apply the revision of Blooms  Taxonomy (Bloom et al., 1956) to the game 
workshops in an attempt to show its potential as educational software and how the workshop 
uses the game to achieve educational goals. 
 
Published in 1956 Bloom’s original taxonomy looks to classify thinking behavior with regard 
to the act of learning. The original taxonomy consisted of three domains: 

 Cognitive Domain: knowledge based domain with six sub levels 
 Affective domain: attitudinal based with five sub levels 
 Psychomotor – physically based, Bloom provided no sub classes however later work 

looked to classify education objectives within the psychomotor domain to bring it in 
to line with the other two areas (Simpson, 1966). 

 
As we seek to validate learning outcomes of an educational process the cognitive domain is 
the most relevant and Blooms original taxonomy sought to define the educational categories 
of the Cognitive domain as: 

I. Knowledge 
II. Comprehension 

III. Application 
IV. Analysis 
V. Synthesis 

VI. Evaluation 

For educators often the most important fields in learning outcomes concern an overlap of the 
fields from Application to Synthesis, and the taxonomy views the progression through the 
domain as hierarchal, the student reaches Evaluation only by progressing through the 
previous five categories. As curriculum advances have focused more on the later portions and 
the sub categories of the knowledge field it has been necessary to revise Blooms taxonomy to 
more closely align with advances in developmental psychology. To this end a revised edition 
of Blooms taxonomy has developed to allow the application of the taxonomy in a two 
dimensional way (Anderson et al., 2005).  

 
In this revision, language and concepts of the original taxonomy are updated, but the 
dimension of the original is also expanded to provide a two dimensional framework. As 
educational outcomes are often associated with dual noun/verb objectives, by expanding the 
taxonomy to allow educators to separate the act and the process a more nuanced goal can be 
achieved (Krathwohl, 2002). This allows separation of the taxonomy into cognitive and 
knowledge domains. 



This revised taxonomy now employs the Knowledge domain as one that is independent of 
subject matter, made up of three of Blooms original fields and one new: 

 Factual knowledge: knowledge of terminology, specific details and elements of the 
task 

 Conceptual knowledge: how elements of the task behave and function within larger 
structures 

 Procedural knowledge: “how” to do something, the techniques and algorithms 
involved 

 Metacognitive knowledge: the new addition focuses on the “knowledge of 
knowledge”, awareness of one’s own cognition.  Specifically strategic knowledge, 
knowledge about cognitive tasks and self-knowledge  (Pintrich, 2002). 

 
The cognitive domain remains similar to Blooms original six fields, modified to more closely 
represent the “verb” nature of the domain: 

I. Remember 
II. Understand 

III. Apply 
IV. Analyze 
V. Evaluate 

VI. Create 
 

The revision retains a loose hierarchal structure, latter does not require former but remember 
is viewed as less complex than understand, in turn less complex than apply etc. and some 
rankings are swapped; Create (Synthesis) and Evaluate. 
 
One of the key benefits for this two dimensional approach is the way it lends itself neatly to a 
table format running the Knowledge dimension against the Cognitive.   Table 1 provides an 
example of the type of use of the two dimensional representation for learning outcomes using 
the revised taxonomy.  The educational developers would be able to identify the tasks at each 
intersection. 
 

Table 1: Example of the table for the Revised Blooms Taxonomy (Krathwohl, 2002) 

 The Cognitive Domain 
The Knowledge 
Dimension 

1.Remember 2.Understand 3.Apply 4.Analyze 5.Evaluate 6.Create 

A. Factual 
Knowledge 

      

B. Conceptual 
Knowledge 

      

C. Procedural 
Knowledge 

      

D. Metacognitive 
Knowledge 

      



Lastly when employing the revised taxonomy additional care must be made to ensure that the 
information provided to students aligns with the educational goals sought. The educator 
needs to validly and reliably assess the higher order cognitive processes. One of the keys to 
link assessment directions and the assessment itself is the proposal of using the cognitive verb 
itself within the task specification (Airasian and Miranda, 2002) and care should be taken to 
avoid ambiguous definition that may cover multiple cognitive domains; “State the…”, “List 
the…”, “Demonstrate that...”, etc. By aligning the language of the task with the objectives of 
the taxonomy it becomes easier for the educator to create relevant assessment tasks and also 
to evaluate the work the student has done with a clear view of the educational goals sought.  

Workshop Background 

The actual workshop that is employed has been provided to a large array of students (500+) 
from a range of backgrounds and interests.  The workshop (or variations of it) has been 
delivered to children from the age of 8 through to 16 years of age.  It has been used it to teach 
children from low socio-economic and disadvantaged backgrounds as well as the opposite 
end of the spectrum.  The workshop has also been used to teach children who are part of a 
gifted and talented organization with both strong scientific and creative minds.  The students 
who take part may be interested in engineering or computer science or they may be taking 
part as a wider outreach program and have little interest in programming or computers. 
 
The initial intention of the workshop was to develop an outreach activity for the School of 
Computer Science, Engineering and Mathematics, at Flinders University that would motivate 
students to think differently about programming and computer science.  This promotion of 
programming and the creativity and fun associated was used to demonstrate at a fundamental 
level the types of tasks a student programmer needs to consider as part of their studies.   
 
As the activity was based in the Minecraft game there were a number of students who were 
interested in the game itself compared with the concepts we demonstrated.  This interest in 
the game proved to be a significant motivator for the students to progress and complete the 
tasks.   
 
Typically the workshop was run on a PC or laptop that may be used by an individual or a pair 
of students.  A standard keyboard and mouse were used to provide the interaction, while low-
end computing hardware was sufficient to effectively conduct the workshop.  Depending on 
the computer networking resources available, all the students could play in the “one world” 
where they log into a hosted game, or they could use individual, isolated worlds deployed to 
each machine.  The benefit of one shared world is the social and communication possibilities, 
while the isolated worlds remove competitive anxiety from the students. 

Workshop Goals 

The goal of the workshop was to provide students with an alternative introductory 
programming experience to standard practice.  Many fundamental activities typically focus 
on text processing to explore language syntax and semantics concepts.  By providing a 
graphical and entertaining medium it was hoped that the students would see this as an “easy” 
activity. 
 
The tasks were designed to exercise the various levels of the cognitive domain of the revised 
Blooms Taxonomy.  We sought to ensure the students could understand the material, this was 
achieved through demonstration, discussion and practical application.  Once the students had 
been able to apply their knowledge we then had them analyse a complex, abstract problem 



and evaluate potential solutions.  Finally, the students were asked to take these developed 
skills and create their own implementations to prescribed problems. 
 
This short process allowed the students to engage with all levels of the cognitive domain and 
thereby achieve better knowledge of the concepts.  As discussed later in this paper, many of 
the students were able to continue this progression and apply and create additional programs 
for their own purposes. 
 

The Minecraft World 

The workshop was run in an already developed and populated Minecraft world.  The world 
was not inhabited by any game enemies and there was no Minecraft game “goal” associated 
with the workshop.  The world was relatively small with the player beginning in a light 
forest, with a multi-story school building to their right and a workspace to their left, see 
Figure 1 for a bird’s eye perspective of the world.  The red arrow head represents the players 
starting location. The brighter regions are areas lit by torches which are used (in combination 
with in-game signage) to guide the player to their appropriate destinations. 

 
To teach the programming concepts a freely available mod was used.  The mod, called 
ComputerCraft, allows the player to place computing equipment within their Minecraft 
worlds.  This computing equipment includes monitors, disk drives, floppy disks, modems, 
and “turtles”; robotic assets that can be programmed by the player, the name derived from 
constructs of programming language interfaces like Logo, (Solomon and Papert, 1976).  The 
ComputerCraft mod allows the player to program some of these assets in a scripting language 
called Lua (Ierusalimschy et al., 1996).  The LUA language can be somewhat forgiving with 
the syntax used and the structuring of the code.  For novice programmers the roadblocks of 
syntax and structure tend to obscure the retention of the programming language concepts 
taught.  When a syntax error occurs a novice programmer may not be able to identify the 
problem or the potential solution.  By providing an instruction list and a well-paced 
development of skills the issue of syntax can be predominantly avoided while still allowing 
the student relative freedom to develop their own work. 
 
The world was populated with the necessary components to complete the workshop tasks.  In 
the work area there were a range of turtles that are preloaded with the necessary components 
to complete the tasks.  Signs to instruct the student about the overall concept of the task, were 

Figure 1. Bird's eye view of the world 



suitably placed within the world.  The teacher then provided additional content to direct the 
creation. 
 
In the school building there were a number of rooms to teach students about other aspects of 
programming as well as computer networks and gameplay.  Behind the school building was a 
target range and castle defence area. 
 
The world itself was set up for the specific task intended for the workshop but we encouraged 
the students to explore the potential uses of the techniques that were taught within their own 
personal games they played at home.  The documentation and world itself was accessible to 
the students that attended the workshops so they were able to use this as a reference later if 
necessary. 

Minecraft Workshop Activity 

The players began their session in the light forest and followed the path indicated by the 
torches, Figure 2 shows the initial player view when first starting the workshop.  This first 
task may seem redundant but it was found that some of the students had not played Minecraft 
before and so this presented the opportunity to describe the controls and functionality of the 
game itself.  

 
Once at the work area the students were asked to represent a large number using a Montessori 
based tool: the golden beads.  The students were told to start with the units.  This introduced 
the students to the programming interface, the functionality of starting up the console in the 
turtle, creating the necessary program file and what a programming statement is, Figure 3 and 
4 show screen shots of the command line interface and the result of placing a block.  The 
students entered the command line environment, created a file and then programmed the 
necessary statements to instruct the turtle to move forward and place a block.  They then 

Figure 2. Initial Player view of the world Figure 3. Turtle operating system and place statement 

Figure 4. Result of the place statement Figure 5. Sequence of statements written to a file 



expanded on this by introducing 90⁰ turns to place all the required units, Figure 5 
demonstrates the list of statements for this functionality. 
 
For the next task the students created the code to place sticks of ten blocks.  This 
demonstrated the code required for repetition structures, Figure 6 and 7 show the code as well 
as the result of the execution.  By extending the concepts covered in the previous step the 
students learning tasks were scaffolded to provide them with reference and structure.  A 
discussion took place indicating how they could encapsulate the statements for placing blocks 
within a loop structure and repeat this process a number of predefined times.  A breakout 
discussion occurred at this point identifying the usefulness of the loop and the potential 
resource and time savings afforded by such structures.  The new program sequence was 
placed on a new turtle.  The reasoning for this was to provide the student with the means to 
analyse the core functionality of their code without the distraction of other elements. 
 
 
 
 
 
 
 
 
 
 
 
 
Once the student had practiced the creation of a tens stick, they were then asked to extend this 
functionality by creating hundreds squares.  To complete this task the student was required to 
nest their loops.  By nesting these structures they could essentially iterate through rows and 
columns and create a square rather than one column.  Another pause was taken here to 
instruct the student, explaining the usefulness of this type of statement and the extensibility 
potential for these code structures.  
 
The last task at this point was to have the students write the necessary code to define a cube 
of blocks that represented one thousand.  By extending their understanding of statements, and 
loops the students were able to define complex nested structures. 
 
The next guided task was to have the student program a turtle to create a castle.  The castle 
was a simple construction of four walls with crenulations across the top.  This task had the 
student write statements to prompt the player for input for the height and length of the castle 
walls.  To achieve this the student developed an interaction script within their program that 
stored the user input in variables.  The task introduced the use of selection to test whether an 
additional block was required to be added to the top of a wall section to provide the 
crenulation shape. 
 
Dependent on the age of the students, the time required to complete the tasks and discuss 
aspects of the code typically took approximately one hour.  Again depending on the 
requirement of the workshop the students were then provided with the opportunity to take the 
content they had worked with and apply it to a new scenario.  The students were told to use 
the firing range behind the school and develop a bombing program that would allow their 
turtles to drop explosive TNT with the intention of destroying all the targets.  It was typically 

Figure 6. Example of the tens loop statement Figure 7. Result of the tens loop program 



at this point where the students got to be creative and utilised the programming statements for 
destruction rather than creation.  The students demonstrated an increased level of excitement 
and enthusiasm at this task, Figure 8 and 9 show the initial code developed by a student and 
the resultant destruction of the world. 
 
The description of this workshop identified the core, fundamental requirements for 
developing code within the Minecraft game.  Follow up workshops were conducted where 
additional features such as networking and exploration were described. 

Post workshop 

Many of the students that took part in the initial workshop returned for subsequent 
workshops.  These follow-up workshops usually took place at least one week after the first 
session.  Students had developed their own solutions and many were so excited by their work 
that they brought their own laptops to demonstrate their achievements.  The complexity of 
their developments demonstrated not just the acquisition of the language but the application 
and ability to create.  As Bloom’s revised taxonomy indicates this creative process 
demonstrates a higher level of cognitive knowledge. 
 
The students’ drive to adapt the knowledge and create their own usages for the concepts 
taught was driven primarily by their enjoyment of the Minecraft game.  By blending this 
enjoyment with a technical process the students were able to enhance their skills.  In follow-
up workshops many students identified their own strategies for solving the presented 
problems.  It was soon apparent that the students had engaged with the material and were 
providing unique solutions that had not been considered by the teaching team. 
 
Given the extensions that students were delivering themselves, the follow-up workshops 
began to evolve into challenge-based tasks.  An abstract problem was presented to teams of 
students and they were required to design and implement an appropriate solution based on 
their own knowledge of the language and their usage of the development environment. 
 
Many students indicated their enjoyment of the tasks and were keen to detail their plans for 
their own implementations and code design. 

Student feedback 

Students were asked about their experience both during and after the workshop discussed in 
this paper.  Of the feedback collected (14% of all attendees), the majority of the responses to 
the question asking about their satisfaction with the workshop was positive.  Many students 
expanded on this with comments suggesting how they may use these skills in their own 
games. 

Figure 8. Initial code for the bombing task Figure 9. Result of the bombing code 



The students were also asked about their previous experience with programming; 
approximately 30% of the students had programmed before but this was usually with visual 
programming languages like Scratch or Lego NXT.  A follow up question asked them to 
describe their perception of the functionality of the development environment.  All of the 
students who had programmed before conveyed a confusion in the development environment 
controls and indicated that they did not use all of the features. 
 
Students were asked whether before attending the Minecraft workshop they were considering 
a career in computing.  Approximately 50% of the students (primarily female) were not 
considering computer science as a career choice.  Comments from students who were not 
interested in computer science suggested that they were not aware of the creative and “fun” 
side of computing.  The students were asked whether they had changed their mind as a result 
of the workshop and of those not interested 69% changed their mind. 
 
The students were specifically asked about the knowledge they felt they had gained from the 
workshop.  Questions asked them to describe their understanding of variables, loops and 
selection.  In their own words the majority of students were able to describe what these 
structures were, their functionality and examples of their implementation. 
 
An abstract problem was also presented to the students and they were asked to describe their 
own solution using “pseudo code”.  88% of the responses defined an appropriate solution.  
These suggested solutions demonstrated the students’ understanding, application and 
synthesis of the materials taught. 
 
Approximately 30% of the students who completed the workshop presented in this paper 
answered questions in follow up workshops.  This number is not a true indication of returning 
students but represents those who wished to provide additional feedback.  These students 
were asked whether their knowledge of programming languages had increased.  All of the 
students responded with yes. 
 
The returning students were asked about their use of the development environment within 
Minecraft and while some indicated a level of complexity with starting the environment, 71% 
said it was easy to use.  91% of returning students said that the experience was enjoyable.  
57% of returning students indicated that they had been developing their own code at home 
and had sought to expand their knowledge and skills. 
 
Finally the returning students were asked whether they had considered looking at other more 
complex and robust programming languages.  The same number of students who had worked 
at home reported that they were interested in developing their understanding and knowledge 
of additional programming languages. 
 
Results from the initial survey and the follow-up survey, suggest that the students enjoyed the 
experience and increased their knowledge.  The results are based off of workshop feedback 
forms that are designed to enable descriptive, subjective feedback rather than quantitative 
results. 
 

Conclusion 

While the workshop continues to be used as an outreach activity it has identified strategies 
and environments that benefit the learning objectives for young programmers.  Students were 
motivated to participate in the lessons as they saw a direct relationship to their own personal 



interests.  The use of the ComputerCraft mod allowed most students to experience an 
engaging and familiar environment.  Most students enjoyed the experience and felt their 
knowledge had increased. 
 
It is expected that future work would look to assess pre and post experiment knowledge.  This 
information would be used to indicate the level cognitive knowledge gained across a number 
of sessions.  The workshop is also being developed into a series for use within school 
computing lessons. 
 
Finally, the success of using such an approach to improve the retention and application of 
programming knowledge has been acknowledge by the comments from the students who 
participated as well as anecdotal and observational evidence. 
  



References 

AIRASIAN, P. W. & MIRANDA, H. 2002. The role of assessment in the revised taxonomy. 
Theory into practice, 41, 249-254. 
ANDERSON, L. W., KRATHWOHL, D. R. & BLOOM, B. S. 2005. A taxonomy for 
learning, teaching, and assessing, Longman. 
BLOOM, B. S., ENGELHART, M., FURST, E. J., HILL, W. H. & KRATHWOHL, D. R. 
1956. Taxonomy of educational objectives: Handbook I: Cognitive domain. New York: 
David McKay, 19, 56. 
DAN200. 2013. ComputerCraft | Programmable computers for Minecraft [Online]. 
Available: http://www.computercraft.info [Accessed 24 August 2013]. 
GEE, O. 2012. Swedish School Makes Minecraft a Must [Online]. Available: 
http://www.thelocal.se/45514/20130109 [Accessed 24 August 2013]. 
IERUSALIMSCHY, R., DE FIGUEIREDO, L. H. & CELES FILHO, W. 1996. Lua-an 
extensible extension language. Softw., Pract. Exper., 26, 635-652. 
IERUSALIMSCHY, R., FIGUEIREDO, L. H. D. & CELES, W. 2007. The evolution of Lua. 
Proceedings of the third ACM SIGPLAN conference on History of programming languages. 
San Diego, California: ACM. 
KRATHWOHL, D. R. 2002. A revision of Bloom's taxonomy: An overview. Theory into 
practice, 41, 212-218. 
OBLINGER, D. 2006. Games and learning. Educause Quarterly Magazine, 29, 5-7. 
PINTRICH, P. R. 2002. The role of metacognitive knowledge in learning, teaching, and 
assessing. Theory into practice, 41, 219-225. 
SIMPSON, E. J. 1966. The Classification of Educational Objectives, Psychomotor Domain. 
SOLOMON, C. J. & PAPERT, S. 1976. A case study of a young child doing turtle graphics 
in LOGO. Proceedings of the June 7-10, 1976, national computer conference and exposition. 
New York, New York: ACM. 
VAN DER HEIJDEN, H. 2004. User acceptance of hedonic information systems. MIS 
quarterly, 695-704. 
WARD, M. R. 2012. Does time spent playing video games crowd out time spent studying?                                        
. 23rd European Regional Conference of the International Telecommunication Society. 
Vienna, Austria. 

ZORN, C., WINGRAVE, C., CHARBONNEAU, E. & LAVIOLA JR, J. J. Exploring 
Minecraft as a Conduit for Increasing Interest in Programming. 

http://www.computercraft.info/
http://www.thelocal.se/45514/20130109


Susan Grider Montgomery, HEALTH COMES FIRST!!!, USA  
 
 
 
 
 
 
 
 

  




